T-cell subsets and suppressor cells in human bone marrow.

نویسندگان

  • I G Schmidt-Wolf
  • S Dejbakhsh-Jones
  • N Ginzton
  • P Greenberg
  • S Strober
چکیده

To characterize immune suppressive and hematopoietic features of enriched subsets of human marrow cells, we separated these cells on Percoll density gradients. CD4+ and CD8+ T cells (CD3+) were enriched in the high-density marrow cell fractions and reduced in low-density fractions. CD4-CD8- (CD3+) T cells expressing the alpha beta T-cell antigen receptor were at least 10 times less numerous than the CD4+ and CD8+ T cells in all fractions. Purified populations of the CD4-CD8- alpha beta + T cells obtained by flow cytometry suppressed the mixed leukocyte reaction (MLR). Another population of suppressor cells that expressed neither T-cell (CD3) nor natural killer cell (CD16) surface markers was also identified. The latter cells had the phenotypic and functional characteristics of "natural suppressor" cells. Suppressor cell activity was enriched in the low-density fractions along with hematopoietic progenitors (colony-forming unit-granulocyte-macrophage and burst-forming unit-erythroid). The progenitor and suppressor cell activities were depleted in high-density fractions. The latter fractions made vigorous responses in the MLR. The low-density fractions, which accounted for less than 10% of the input marrow cells, suppressed the MLR and did not respond. Further evaluation of the low-density fractions may be of value in allogeneic bone marrow transplantation due to the reduction of CD4+ and CD8+ T cells and the enrichment of hematopoietic progenitors as well as immune suppressor cells that may inhibit graft-versus-host disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Human Mesenchymal Stem Cells and Their, Clinical Aapplication

There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...

متن کامل

Imbalances within the peripheral blood T-helper (CD4+) and T-suppressor (CD8+) cell populations in the reconstitution phase after human bone marrow transplantation.

Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two-color immunofluorescence analysis. CD4+ and CD8+ T cel...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 80 12  شماره 

صفحات  -

تاریخ انتشار 1992